5.1. The /proc File System

In Linux there is an additional mechanism for the kernel and kernel modules to send information to processes --- the /proc file system. Originally designed to allow easy access to information about processes (hence the name), it is now used by every bit of the kernel which has something interesting to report, such as /proc/modules which has the list of modules and /proc/meminfo which has memory usage statistics.

The method to use the proc file system is very similar to the one used with device drivers --- you create a structure with all the information needed for the /proc file, including pointers to any handler functions (in our case there is only one, the one called when somebody attempts to read from the /proc file). Then, init_module registers the structure with the kernel and cleanup_module unregisters it.

The reason we use proc_register_dynamic[1] is because we don't want to determine the inode number used for our file in advance, but to allow the kernel to determine it to prevent clashes. Normal file systems are located on a disk, rather than just in memory (which is where /proc is), and in that case the inode number is a pointer to a disk location where the file's index-node (inode for short) is located. The inode contains information about the file, for example the file's permissions, together with a pointer to the disk location or locations where the file's data can be found.

Because we don't get called when the file is opened or closed, there's no where for us to put try_module_get and try_module_put in this module, and if the file is opened and then the module is removed, there's no way to avoid the consequences. In the next chapter we'll see a harder to implement, but more flexible, way of dealing with /proc files which will allow us to protect against this problem as well.

Example 5-1. procfs.c

/*
 *  procfs.c -  create a "file" in /proc
 */

#include <linux/module.h>	/* Specifically, a module */
#include <linux/kernel.h>	/* We're doing kernel work */
#include <linux/proc_fs.h>	/* Necessary because we use the proc fs */

struct proc_dir_entry *Our_Proc_File;

/* Put data into the proc fs file.
 * 
 * Arguments
 * =========
 * 1. The buffer where the data is to be inserted, if
 *    you decide to use it.
 * 2. A pointer to a pointer to characters. This is
 *    useful if you don't want to use the buffer
 *    allocated by the kernel.
 * 3. The current position in the file
 * 4. The size of the buffer in the first argument.
 * 5. Write a "1" here to indicate EOF.
 * 6. A pointer to data (useful in case one common 
 *    read for multiple /proc/... entries)
 *
 * Usage and Return Value
 * ======================
 * A return value of zero means you have no further
 * information at this time (end of file). A negative
 * return value is an error condition.
 *
 * For More Information
 * ====================
 * The way I discovered what to do with this function
 * wasn't by reading documentation, but by reading the
 * code which used it. I just looked to see what uses
 * the get_info field of proc_dir_entry struct (I used a
 * combination of find and grep, if you're interested),
 * and I saw that  it is used in <kernel source
 * directory>/fs/proc/array.c.
 *
 * If something is unknown about the kernel, this is
 * usually the way to go. In Linux we have the great
 * advantage of having the kernel source code for
 * free - use it.
 */
ssize_t
procfile_read(char *buffer,
	      char **buffer_location,
	      off_t offset, int buffer_length, int *eof, void *data)
{
	printk(KERN_INFO "inside /proc/test : procfile_read\n");

	int len = 0;		/* The number of bytes actually used */
	static int count = 1;

	/* 
	 * We give all of our information in one go, so if the
	 * user asks us if we have more information the
	 * answer should always be no.
	 *
	 * This is important because the standard read
	 * function from the library would continue to issue
	 * the read system call until the kernel replies
	 * that it has no more information, or until its
	 * buffer is filled.
	 */
	if (offset > 0) {
		printk(KERN_INFO "offset %d : /proc/test : procfile_read, \
		       wrote %d Bytes\n", (int)(offset), len);
		*eof = 1;
		return len;
	}

	/* 
	 * Fill the buffer and get its length 
	 */
	len = sprintf(buffer,
		      "For the %d%s time, go away!\n", count,
		      (count % 100 > 10 && count % 100 < 14) ? "th" :
		      (count % 10 == 1) ? "st" :
		      (count % 10 == 2) ? "nd" :
		      (count % 10 == 3) ? "rd" : "th");
	count++;

	/* 
	 * Return the length 
	 */
	printk(KERN_INFO
	       "leaving /proc/test : procfile_read, wrote %d Bytes\n", len);
	return len;
}

int init_module()
{
	int rv = 0;
	Our_Proc_File = create_proc_entry("test", 0644, NULL);
	Our_Proc_File->read_proc = procfile_read;
	Our_Proc_File->owner = THIS_MODULE;
	Our_Proc_File->mode = S_IFREG | S_IRUGO;
	Our_Proc_File->uid = 0;
	Our_Proc_File->gid = 0;
	Our_Proc_File->size = 37;

	printk(KERN_INFO "Trying to create /proc/test:\n");

	if (Our_Proc_File == NULL) {
		rv = -ENOMEM;
		remove_proc_entry("test", &proc_root);
		printk(KERN_INFO "Error: Could not initialize /proc/test\n");
	} else {
		printk(KERN_INFO "Success!\n");
	}

	return rv;
}

void cleanup_module()
{
	remove_proc_entry("test", &proc_root);
	printk(KERN_INFO "/proc/test removed\n");
}

Notes

[1]

In version 2.0, in version 2.2 this is done for us automatically if we set the inode to zero.